Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.513
Filtrar
1.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564033

RESUMO

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Assuntos
Cymbopogon , Água Potável , Cálculos Renais , Polietilenoglicóis , Polietilenoimina , Urolitíase , Animais , Ratos , Petroselinum , Cloreto de Amônio , Goma Arábica , Emulsões , Catalase , Magnésio , Nanogéis , Urolitíase/induzido quimicamente , Urolitíase/tratamento farmacológico , Urolitíase/prevenção & controle , Sementes , Antioxidantes/uso terapêutico , Etanol , Glutationa , Oxalatos , Etilenoglicóis , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
BMC Vet Res ; 20(1): 127, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561720

RESUMO

BACKGROUND: Pseudomonas putida is a pathogenic bacterium that induces great losses in fishes, including Nile tilapia (Oreochromis niloticus). Currently, the application of nanomaterials in aquaculture practices has gained more success as it endows promising results in therapies compared to traditional protocols. OBJECTIVE: Therefore, the current perspective is considered the first report to assess the anti-bacterial efficacy of titanium dioxide nanogel (TDNG) against Pseudomonas putida (P. putida) in Nile tilapia. METHODS: The fish (n = 200; average body weight: 47.50±1.32 g) were allocated into four random groups (control, TDNG, P. putida, and TDNG + P. putida), where 0.9 mg/L of TDNG was applied as bath treatment for ten days. RESULTS: Outcomes revealed that P. putida infection caused ethological alterations (surfacing, abnormal movement, and aggression) and depression of immune-antioxidant variables (complement 3, lysozyme activity, total antioxidant capacity, superoxide dismutase, and reduced glutathione content). Additionally, a substantial elevation in hepatorenal biomarkers (aspartate and alanine aminotransferases and creatinine) with clear histopathological changes and immuno-histochemical alterations (very weak BCL-2 and potent caspase-3 immuno-expressions) were seen. Surprisingly, treating P. putida-infected fish with TDNG improved these variables and obvious restoration of the tissue architectures. CONCLUSION: Overall, this report encompasses the key role of TDNG as an anti-bacterial agent for controlling P. putida infection and improving the health status of Nile tilapia.


Assuntos
Ciclídeos , Doenças dos Peixes , Polietilenoglicóis , Polietilenoimina , Pseudomonas putida , Titânio , Animais , Antioxidantes , Nanogéis , Dieta , Suplementos Nutricionais , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia
3.
BMC Complement Med Ther ; 24(1): 138, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566054

RESUMO

Herbal components are highly useful assets for the advancement of novel antibacterial drugs. Nanotechnology holds great promise as an approach to enhance the effectiveness and develop the composition of these substances. The study developed nanogels incorporating camphor, thymol, and a combination derived from the initial nanoemulsions with particle sizes of 103, 85, and 135 nm, respectively. The viscosity of nanogels and the successful loading of compounds in them were examined by viscometery and ATR-FTIR studies. The bactericidal properties of the nanogels were examined against four bacterial strains. The nanogel containing camphor and thymol at 1250 µg/mL concentration exhibited complete growth suppression against Pseudomonas aeruginosa and Staphylococcus aureus. The thymol nanogel at 1250 µg/mL and the camphor nanogel at 2500 µg/mL exhibited complete inhibition of growth on Listeria monocytogenes and Escherichia coli, respectively. Both nanogels showed favorable effectiveness as antibacterial agents and could potentially examine a wide range of pathogens and in vivo studies.


Assuntos
Cânfora , Polietilenoglicóis , Polietilenoimina , Timol , Timol/farmacologia , Nanogéis , Cânfora/farmacologia , Antibacterianos/farmacologia , Escherichia coli
4.
J Vet Sci ; 25(2): e30, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38568831

RESUMO

BACKGROUND: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. OBJECTIVES: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. METHODS: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. RESULTS: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. CONCLUSIONS: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.


Assuntos
Quitosana , Nanopartículas , Animais , Staphylococcus epidermidis/genética , Nanogéis , Gelatina/farmacologia , Quercetina/farmacologia , Biofilmes , Quitosana/farmacologia , Quitosana/química , Gelatinases/farmacologia , Antibacterianos/farmacologia
5.
AAPS PharmSciTech ; 25(4): 83, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605211

RESUMO

Smart nanomedicinal treatment for cancer manifests a solubility challenge with inherent nanoscale size and nonspecific release with stimuli-responsive potential. This is the limelight in novel chemotherapy to pursue physiochemical differences between the tumor microenvironment (TME) and normal cells, which introduces active groups of nanocarriers responding to various stimuli, endowing them with concise responses to various tumor-related signals. The nanogels were successfully prepared by a modified solvent evaporation technique. Nine batches were formulated by changing the chitosan concentration (12, 14, 16 mg/ml) and sonication time (5, 10, 15 min). The formulations were optimized for particle size and zeta potential with high percent entrapment efficiency (%EE) through Central Composite Design software. The optimized batch F7 had a 182-nm size and high zeta potential (64.5 mV) with 98% EE. The drug release of F7 was higher at pH 6 (97.556%) than at pH 7.4 (45.113%). The pharmacokinetic study shows that the release follows the Hixon plot model (R2 = 0.9334) that shifts to zero order (R2 = 0.9149). The nanogel F7 was observed for stability and showed an absence of color change, phase separation, and opacity for 6 months. In the present study, the pH difference between cancer cells and normal cells is the key point of the smart nanogel. This study is promising but challenging depending on the in vivo study. The nanogel was successfully prepared and evaluated for pH-responsive release. As hemangiosarcoma commonly occurs in dogs, this formulation helps to limit the difficulties with administration.


Assuntos
Hemangiossarcoma , Polietilenoglicóis , Polietilenoimina , Polímeros , Animais , Cães , Nanogéis , Sorafenibe , Concentração de Íons de Hidrogênio , Portadores de Fármacos , Microambiente Tumoral
6.
J Mater Chem B ; 12(13): 3292-3306, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502068

RESUMO

The regeneration and repair of diabetic wounds, especially those including bacterial infection, have always been difficult and challenging using current treatment. Herein, an effective strategy is reported for constructing glucose-responsive functional hydrogels using nanocomposites as nodes. In fact, tannic acid (TA)-modified ceria nanocomposites (CNPs) and a zinc metal-organic framework (ZIF-8) were employed as nodes. Subsequent crosslinking with 3-acrylamidophenylboronic acid achieved functional nanocomposite-hydrogels (TA@CN gel, TA@ZMG gel) by radical-mediated polymerization. Compared with a simple physically mixed hydrogel system, the mechanical properties of TA@CN gel and TA@ZMG gel are significantly enhanced due to the intervention of the nanocomposite nodes. In addition, this kind of nanocomposite hydrogel can realize the programmed loading of drugs and release of drugs in response to glucose/PH, to coordinate and promote its application in the regeneration and repair of diabetic wounds and infected diabetic wounds. Specifically, TA@CN gel can remove reactive oxygen species and generate oxygen through its various enzymatic activities. At the same time, it can effectively promote neovascularization, thus promoting the regeneration and repair of diabetic wounds. Furthermore, glucose oxidase-loaded TA@ZMG gel exhibits glucose response and pH-regulating functions, triggering programmed metformin (Met) release by degrading the metal-organic framework (MOF) backbone. It also exhibited additional synergistic effects of antibacterial activity, hair regeneration and systemic blood glucose regulation, which make it suitable for the repair of more complex infected diabetic wounds. Overall, this novel nanocomposite-mediated hydrogel holds great potential as a biomaterial for the healing of chronic diabetic wounds, opening up new avenues for further biomedical applications.


Assuntos
Diabetes Mellitus , Estruturas Metalorgânicas , Nanocompostos , Polifenóis , Hidrogéis , Nanogéis , Glucose
7.
Sci Rep ; 14(1): 6111, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480832

RESUMO

Remarkable resistance of bacterial biofilms to high doses of antimicrobials and antibiotics is one of their main challenges. Encapsulation of proteolytic enzymes is one of the suggested strategies to tackle this problem. In this regard, the antibacterial and anti-biofilm activity of biocompatible hyaluronic acid- Lysine nanogels containing serratiopeptidase (SRP-loaded HA-Lys nanogel) was assessed against P. aeruginosa and S. aureus strains. SRP-loaded HA-Lys nanogel was prepared using dropping method and optimized by Box-Behnken experimental design. These formulations were studied for physical characterization, release profile, stability, bioactivity, and anti-biofilm effects. The particle size, polydispersity index (PDI), and surface charge were measured by Zetasizer Nano ZS. The average particle size and zeta potential of the optimum sample were 156 nm and -14.1 mV, respectively. SRP release showed an initial burst followed by sustained release and the highest release was around 77%. Enzyme biological activity data revealed the higher efficiency of free SRP compared to SRP-loaded HA-Lys nanogel. The time-kill assay showed that both forms of SRP-loaded HA-Lys nanogel and blank HA-Lys nanogel showed significant antimicrobial activity against examined bacteria in comparison to the free enzyme. The obtained results demonstrated improved anti-biofilm efficacy and down regulation of tested biofilm genes for both SRP-loaded HA-Lys nanogel 100% and blank HA-Lys nanogel 100% compared to SRP 100%.


Assuntos
Ácido Hialurônico , Lisina , Polietilenoglicóis , Polietilenoimina , Nanogéis/química , Ácido Hialurônico/química , Lisina/farmacologia , Staphylococcus aureus/fisiologia , Peptídeo Hidrolases/farmacologia , Antibacterianos/farmacologia , Biofilmes
8.
Carbohydr Polym ; 334: 122064, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553247

RESUMO

Diabetic wound infection brings chronic pain to patients and the therapy remains a crucial challenge owing to the disruption of the internal microenvironment. Herein, we report a nano-composite hydrogel (ZnO@HN) based on ZnO nanoparticles and a photo-trigging hyaluronic acid which is modified by o-nitrobenzene (NB), to accelerate infected diabetic wound healing. The diameter of the prepared ZnO nanoparticle is about 50 nm. X-ray photoelectron spectroscopy (XPS) analysis reveals that the coordinate bond binds ZnO in the hydrogel, rather than simple physical restraint. ZnO@HN possesses efficient antioxidant capacity and it can scavenge DPPH about 40 % in 2 h and inhibit H2O2 >50 % in 8 h. The nano-composite hydrogel also exhibits satisfactory antibacterial capacity (58.35 % against E. coli and 64.03 % against S. aureus for 6 h). In vitro tests suggest that ZnO@HN is biocompatible and promotes cell proliferation. In vivo experiments reveal that the hydrogel can accelerate the formation of new blood vessels and hair follicles. Histological analysis exhibits decreased macrophages, increased myofibroblasts, downregulated TNF-α expression, and enhanced VEGFA expression during wound healing. In conclusion, ZnO@HN could be a promising candidate for treating intractable infected diabetic skin defection.


Assuntos
Diabetes Mellitus , Óxido de Zinco , Humanos , Ácido Hialurônico , Espécies Reativas de Oxigênio , Escherichia coli , Nanogéis , Óxido de Zinco/farmacologia , Óxido de Zinco/uso terapêutico , Óxido de Zinco/química , Staphylococcus aureus , Peróxido de Hidrogênio , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Cicatrização , Diabetes Mellitus/tratamento farmacológico , Hidrogéis/farmacologia , Hidrogéis/química
9.
Int J Biol Macromol ; 264(Pt 2): 130568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447822

RESUMO

Polysaccharide based self-healing and injectable hydrogels with reversible characteristics have widespread potential in protein drug delivery. However, it is a challenge to design the dynamic hydrogel for sequential release of protein drugs. Herein, we developed a novel mussel inspired sequential protein delivery dynamic polysaccharide hydrogel. The nanocomposite hydrogel can be fabricated through doping polydopamine nanoparticles (PDA NPs) into reversible covalent bond (imine bonds) crosslinked polymer networks of oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CEC), named PDA NPs@OHA-l-CEC. Besides multiple capabilities (i.e., injection, self-healing, and biodegradability), the nanocomposite hydrogel can achieve sustained and sequential protein delivery of vascular endothelial growth factor (VEGF) and bovine serum albumin (BSA). PDA NPs doped in hydrogel matrix serve dual roles, acting as secondary protein release structures and form dynamic non-covalent interactions (i.e., hydrogen bonds) with polysaccharides. Moreover, by adjusting the oxidation degree of OHA, the hydrogels with different crosslinking density could control overall protein release rate. Analysis of different release kinetic models revealed that Fickian diffusion drove rapid VEGF release, while the slower BSA release followed a Super Case II transport mechanism. The novel biocompatible system achieved sequential release of protein drugs has potentials in multi-stage synergistic drug deliver based on dynamic hydrogel.


Assuntos
Quitosana , Fator A de Crescimento do Endotélio Vascular , Nanogéis , Fator A de Crescimento do Endotélio Vascular/química , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Quitosana/química , Polissacarídeos/química , Ácido Hialurônico/química , Soroalbumina Bovina
10.
ACS Appl Mater Interfaces ; 16(14): 17313-17322, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534029

RESUMO

Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.


Assuntos
Neoplasias , Óxido Nítrico , Polietilenoglicóis , Polietilenoimina , Humanos , Nanogéis , Peróxido de Hidrogênio/química , Estudos Prospectivos , Neoplasias/patologia , Glucose Oxidase/química , Catálise , Glucose , Linhagem Celular Tumoral
11.
Biomater Sci ; 12(8): 2121-2135, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38456326

RESUMO

Natural polymer-based hydrogels have been widely applied in bone tissue engineering due to their excellent biocompatibility and outstanding ability of drug encapsulation. However, they have relatively weak mechanical properties and lack bioactivity. Hence, we developed a bioactive nanoparticle composite hydrogel by incorporating LAPONITE®, which is an osteo-inductive inorganic nanoparticle. The incorporation of the nanoparticle significantly enhanced its mechanical properties. In vitro evaluation indicated that the nanocomposite hydrogel could exhibit good biocompatibility. Besides, the nanocomposite hydrogel was proved to have excellent osteogenic ability with up-regulated expression of osteogenic markers such as type I collagen (COL-I), runt-related transcription factor-2 (Runx-2) and osteocalcin (OCN). Furthermore, the in vivo study confirmed that the composite nanocomposite hydrogel could significantly promote new bone formation, providing a prospective strategy for bone tissue regeneration.


Assuntos
Fibroínas , Nanopartículas , Hidrogéis , Nanogéis , Regeneração Óssea , Engenharia Tecidual , Seda
12.
Photochem Photobiol Sci ; 23(4): 665-679, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443738

RESUMO

Nanosized alginate-based particles (NAPs) were obtained in a one-pot solvent-free synthesis procedure, achieving the design of a biocompatible nanocarrier for the encapsulation of IbM6 antimicrobial peptide (IbM6). IbM6 is integrated in the nascent nanosized hydrogel self-assembly guided by electrostatic interactions and by weak interactions, typical of soft matter. The formation of the nanogel is a dynamic and complex process, which presents an interesting temporal evolution. In this work, we optimized the synthesis conditions of IbM6-NAPs based on small-angle X-ray scattering (SAXS) measurements and evaluated its time evolution over several weeks by sensing the IbM6 environment in IbM6-NAPs from photochemical experiments. Fluorescence deactivation experiments revealed that the accessibility of different quenchers to the IbM6 peptide embedded in NAPs is dependent on the aging time of the alginate network. Lifetimes measurements indicate that the deactivation paths of the excited state of the IbM6 in the nanoaggregates are reduced when compared with those exhibited by the peptide in aqueous solution, and are also dependent on the aging time of the nanosized alginate network. Finally, the entrapment of IbM6 in NAPs hinders the degradation of the peptide by trypsin, increasing its antimicrobial activity against Escherichia coli K-12 in simulated operation conditions.


Assuntos
Alginatos , Escherichia coli K12 , Polietilenoglicóis , Polietilenoimina , Nanogéis , Peptídeos Antimicrobianos , Espalhamento a Baixo Ângulo , Difração de Raios X , Peptídeos/farmacologia , Escherichia coli
13.
J Colloid Interface Sci ; 665: 329-344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531278

RESUMO

We demonstrate that cytosine moieties within physically cross-linked supramolecular polymers not only manipulate drug delivery and release, but also confer specific targeting of cancer cells to effectively enhance the safety and efficacy of chemotherapy-and thus hold significant potential as a new perspective for development of drug delivery systems. Herein, we successfully developed physically cross-linked supramolecular polymers (PECH-PEG-Cy) comprised of hydrogen-bonding cytosine pendant groups, hydrophilic poly(ethylene glycol) side chains, and a hydrophobic poly(epichlorohydrin) main chain. The polymers spontaneously self-assemble into a reversibly hydrogen-bonded network structure induced by cytosine and directly form spherical nanogels in aqueous solution. Nanogels with a high hydrogen-bond network density (i.e., a higher content of cytosine moieties) exhibit outstanding long-term structural stability in cell culture substrates containing serum, whereas nanogels with a relatively low hydrogen-bond network density cannot preserve their structural integrity. The nanogels also exhibit numerous unique physicochemical characteristics in aqueous solution, such as a desirable spherical size, high biocompatibility with normal and cancer cells, excellent drug encapsulation capacity, and controlled pH-responsive drug release properties. More importantly, in vitro experiments conclusively indicate the drug-loaded PECH-PEG-Cy nanogels can selectively induce cancer cell-specific apoptosis and cell death via cytosine receptor-mediated endocytosis, without significantly harming normal cells. In contrast, control drug-loaded PECH-PEG nanogels, which lack cytosine moieties in their structure, can only induce cell death in cancer cells through non-specific pathways, which significantly inhibits the induction of apoptosis. This work clearly demonstrates that the cytosine moieties in PECH-PEG-Cy nanogels confer selective affinity for the surface of cancer cells, which enhances their targeted cellular uptake, cytotoxicity, and subsequent induction of programmed cell death in cancer cells.


Assuntos
Neoplasias , Polímeros , Nanogéis , Polímeros/química , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Apoptose , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico
14.
J Colloid Interface Sci ; 663: 554-565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428113

RESUMO

Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (Tp). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the Tp have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the Tp, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the Tp. Furthermore, the properties of biodegradable hydrogel photonic crystals above the Tp were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.


Assuntos
Hidrogéis , Polietilenoglicóis , Nanogéis , Hidrogéis/química , Polietilenoimina
15.
ACS Appl Bio Mater ; 7(3): 1976-1989, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38447202

RESUMO

The development of nanocarriers to prolong the residence time and enhance the permeability of chemotherapeutic drugs on bladder mucosa is important in the postsurgery treatment of superficial bladder cancers (BCs). Here, the mucoadhesive HA-SH/PF127 nanogels composed of a temperature-sensitive Pluronic F127 (PF127) core and thiolated hyaluronic acid (HA-SH) shell were prepared by the emulsification/solvent evaporation method. The nanogels were constructed through the thiol-maleimide click reaction in the HA-SH aqueous side of the oil-water interface and self-oxidized cross-linking thiols between HA-SH. The HA-SH/PF127 nanogels prepared at different thiol-to-maleimide group molar ratios, water-to-oil volume ratios, and cross-linking reaction times were characterized regarding hydrodynamic diameter (Dh) and zeta potential (ζ), and the optimal formulation was obtained. The excellent mucoadhesive properties of the HA-SH/PF127 nanogels were evaluated by using the mucin particle method. Doxorubicin (DOX) was encapsulated in the PF127 core of DOX@HA-SH/PF127 nanogels with a high loading efficiency (87.5%) and sustained release from the nanogels in artificial urine. Ex vivo studies on porcine bladder mucosa showed that the DOX@HA-SH/PF127 nanogels enhanced the penetration of the DOX into the bladder mucosa without disrupting the mucus structure or the bladder tissue. A significant dose-dependent cytotoxic effect of DOX@HA-SH/PF127 nanogels on both T24 and MB49 cells was observed. The present study demonstrates that the mucoadhesive HA-SH/PF127 nanogels are a promising intravesical drug delivery system for superficial BC therapy.


Assuntos
Ácido Hialurônico , Maleimidas , Poloxâmero , Polietilenoglicóis , Polietilenoimina , Compostos de Sulfidrila , Animais , Suínos , Poloxâmero/química , Nanogéis , Ácido Hialurônico/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Doxorrubicina/química , Água
16.
ACS Appl Mater Interfaces ; 16(12): 14421-14433, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497587

RESUMO

Injectable antibacterial and osteoinductive hydrogels have received considerable attention for promoting bone regeneration owing to their versatile functionalities. However, a current hydrogel with antibacterial, osteoinductive, and antioxidant properties by a facile method for periodontitis treatment is still missing. To overcome this issue, we designed an injectable hydrogel system (GPM) composed of gelatin, Ti3C2Tx MXene nanosheets, and poly-l-lysine using a simple enzymatic cross-linking technique. Physicochemical characterization demonstrated that the GPM hydrogel matrix exhibited excellent stability, moderate tissue adhesion ability, and good mechanical behavior. The GPM hydrogels significantly inhibited the growth of Porphyromonas gingivalis, scavenged reactive oxygen species, attenuated inflammatory responses, and enhanced bone tissue regeneration. Intriguingly, the arrangement of the junctional epithelium, alveolar bone volume, and alveolar bone height in the GPM-treated periodontal disease group recovered to that of the healthy group. Therefore, our injectable hydrogel system with versatile functions may serve as an excellent tissue scaffold for the treatment of periodontitis.


Assuntos
Periodontite , Humanos , Nanogéis , Espécies Reativas de Oxigênio , Periodontite/tratamento farmacológico , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologia
17.
Int J Biol Macromol ; 265(Pt 2): 130654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553395

RESUMO

AIM AND BACKGROUND: Trinitroglycerin (TNG) is a remarkable NO-releasing agent. Here, we synthesized TNG based on chitosan Nanogels (Ngs) for ameliorating complications associated with high-dose TNG administration. METHOD: TNG-Ngs fabricated through ionic-gelation technique. Fourier-transformed infrared (FT-IR), zeta-potential, dynamic light scattering (DLS), and electron microscopy techniques evaluated the physicochemical properties of TNG-Ngs. MTT was used to assess the biocompatibility of TNG-Ngs, as the antioxidative properties were determined via lactate dehydrogenase (LDH), reactive oxygen species (ROS), and lipid peroxide (LPO) assays. The antibacterial activity was evaluated against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococci (VRE). RESULTS: Physicochemical characterization reveals that TNG-Ngs with size diameter (96.2 ± 29 nm), polydispersity index (PDI, 0.732), and negative zeta potential (-1.1 mv) were fabricated. The encapsulation efficacy (EE) and loading capacity (LC) were obtained at 71.1 % and 2.3 %, respectively, with no considerable effect on particle size and morphology. The cytotoxicity assay demonstrated that HepG2 cells exposed to TNG-Ngs showed relative cell viability (RCV) of >80 % for 70 µg/ml compared to the TNG-free drug at the same concentration (P < 0.05). TNG-Ngs showed significant differences with the TNG-free drug for LDH, LPO, and ROS formation at the same concentration (P < 0.001). The antibacterial activity of the TNG-Ngs against S. aureus, E. coli, VRE, and MRSA was higher than the TNG-free drug and Ngs (P < 0.05). CONCLUSION: TNG-Ngs with enhanced antibacterial and antioxidative activity and no obvious cytotoxicity might be afforded as novel nanoformulation for promoting NO-dependent diseases.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Nanogéis , Quitosana/farmacologia , Quitosana/química , Staphylococcus aureus , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química
18.
Eur J Med Res ; 29(1): 169, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475920

RESUMO

Myocardial Infarction (MI) is major cause of heart failure, highlighting the critical need for effective therapeutic strategies to improve cardiac repair. This study investigated the cardioprotective effects of VX765-coated polyethyleneimine (PEI)/sodium alginate (AG) composite nanogels (AG/PEI-VX765 NGs) in a rat model of MI. Additionally, AG-VX765 NGs and PEI-VX765 nanospheres (NPs) were synthesized and tested to compare their efficacy. MI was caused in rats by ligating the left anterior descending branch of the coronary artery, and the rats were grouped and set as Sham, MI, MI + VX765, MI + AG-VX765NGs, MI + PEI-VX765NPs, and MI + AG/PEI-VX765NGs. Results demonstrate that AG/PEI-VX765NGs were non-toxic and exhibited a sustained release of VX765. In vivo, experiments demonstrated that all treatment groups significantly enhanced cardiac function, reduced infarct size, fibrosis, and apoptosis in rats with MI, with the MI + AG/PEI-VX765NGs group exhibiting the most favorable outcomes. Our findings indicate that AG/PEI-VX765NGs represent a promising therapeutic approach for MI treatment.


Assuntos
Alginatos , Infarto do Miocárdio , para-Aminobenzoatos , Ratos , Animais , Nanogéis/uso terapêutico , Alginatos/uso terapêutico , Dipeptídeos/uso terapêutico
19.
J Mater Chem B ; 12(12): 3092-3102, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445378

RESUMO

Conductive hydrogel sensors have attracted attention for use in human motion monitoring detection, but integrating excellent biocompatibility, mechanical, self-adhesive, and self-healing properties, and high sensitivity into a hydrogel remains a challenge. In this work, a novel multifunctional conductive particle was designed and added to a polyacrylamide (PAM) matrix to prepare the hydrogel. It is worth noting that with the addition of polydopamine@poly(3,4-ethylenedioxythiophene) (PDA@PEDOT), the PAM/PDA@PEDOT hydrogel (PAPP hydrogel) showed excellent mechanical properties and high adhesion strength on different substrate surfaces. Meanwhile, the PAPP hydrogel shows outstanding self-healing properties, the mechanical properties of PAPP hydrogel broken from the middle recovered 92% tensile strength and 95% elongation at break after 12 h, respectively. Furthermore, assembled as strain wireless sensors, the PAPP sensor displays high sensitivity, where the gauge factor (GF) is 2.82, which can be used to accurately detect human facial micro-expressions and movements. Overall, the PAPP hydrogel with excellent mechanical, self-adhesive, and self-healing properties, and high sensitivity, demonstrated promise for use in wearable devices and bionic skins.


Assuntos
Biônica , Cimentos de Resina , Humanos , Nanogéis , Condutividade Elétrica , Hidrogéis
20.
Int J Biol Macromol ; 262(Pt 2): 129996, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342271

RESUMO

The limitations of traditional therapeutic methods such as chemotherapy serious restricted the application in tumor treatment, including poor targeting, toxic side effects and poor precision. It is important to develop non-chemotherapeutic systems to achieve precise and efficient tumor treatment. Therefore, a functional metal-organic framework material (MOF) with porphyrin core and doped with Cu2+ and surface-modified with polydopamine (PDA), namely PCN-224(Cu)@PDA (PCP) was designed and prepared. After loaded into the injectable and self-healable hydrogels by dynamic Schiff base bonding of oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMC), the multifunctional nanocomposite hydrogels were obtained, in which Cu2+ in MOF converts to Cu+ by reacting with glutathione (GSH) which reduces the tumor antioxidant activity to improve the CDT effect. The Cu2+/Cu+ induces Fenton-like reaction in tumor cells to produce a toxic hydroxyl radical (OH). PDA achieves photothermal conversion under NIR light for photothermal therapy (PTT), and porphyrin core as a ligand generates reactive oxygen species (ROS), presenting highly efficient photodynamic therapy (PDT). Injectable self-healing hydrogel as a loading platform can be in situ injected to tumor site to release PCP and endocytosed by tumor cells to achieve precise and synergistic CDT-PDT-PTT therapy.


Assuntos
Quitosana , Nanopartículas , Neoplasias , Porfirinas , Humanos , Nanogéis , Alginatos , Glutationa , Hidrogéis , Óxidos , Linhagem Celular Tumoral , Peróxido de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...